Minimax analysis of active learning

نویسندگان

  • Steve Hanneke
  • Liu Yang
چکیده

This work establishes distribution-free upper and lower bounds on the minimax label complexity of active learning with general hypothesis classes, under various noise models. The results reveal a number of surprising facts. In particular, under the noise model of Tsybakov (2004), the minimax label complexity of active learning with a VC class is always asymptotically smaller than that of passive learning, and is typically significantly smaller than the best previously-published upper bounds in the active learning literature. In highnoise regimes, it turns out that all active learning problems of a given VC dimension have roughly the same minimax label complexity, which contrasts with well-known results for bounded noise. In low-noise regimes, we find that the label complexity is well-characterized by a simple combinatorial complexity measure we call the star number. Interestingly, we find that almost all of the complexity measures previously explored in the active learning literature have worst-case values exactly equal to the star number. We also propose new active learning strategies that nearly achieve these minimax label complexities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beating the Minimax Rate of Active Learning with Prior Knowledge

Active learning refers to the learning protocol where the learner is allowed to choose a subset of instances for labeling. Previous studies have shown that, compared with passive learning, active learning is able to reduce the label complexity exponentially if the data are linearly separable or satisfy the Tsybakov noise condition with parameter κ = 1. In this paper, we propose a novel active l...

متن کامل

Negative Results for Active Learning with Convex Losses

We study the problem of active learning with convex loss functions. We prove that even under bounded noise constraints, the minimax rates for proper active learning are often no better than passive learning.

متن کامل

Upper and Lower Error Bounds for Active Learning

This paper analyzes the potential advantages and theoretical challenges of ”active learning” algorithms. Active learning involves sequential, adaptive sampling procedures that use information gleaned from previous samples in order to focus the sampling and accelerate the learning process relative to “passive learning” algorithms, which are based on non-adaptive (usually random) samples. There a...

متن کامل

Active Learning with a Drifting Distribution

We study the problem of active learning in a stream-based setting, allowing the distribution of the examples to change over time. We prove upper bounds on the number of prediction mistakes and number of label requests for established disagreement-based active learning algorithms, both in the realizable case and under Tsybakov noise. We further prove minimax lower bounds for this problem.

متن کامل

Plug-in Approach to Active Learning

We present a new active learning algorithm based on nonparametric estimators of the regression function. Our investigation provides probabilistic bounds for the rates of convergence of the generalization error achievable by proposed method over a broad class of underlying distributions. We also prove minimax lower bounds which show that the obtained rates are almost tight.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015